

Natural Biostimulant Innovations

BioFlavv™ - Flavonoids OMR

Natural • Scalable • Proven Efficacy • Affordable • Sustainable

Next Generation Innovative Biostimulants for Sustainable Agriculture with Conventional and Organic Growers

Table of Contents

- 1.) Introduction
- 2.) BioFlavv Benefits/Results
- 3.) Experiences on crops
- 4.) Technology: plant signaling
- 5.) Products
- 6.) BioFlavv™ documented results on
 - roots & soil
 - field, forage & grain crops
 - wine & table grapes
 - fruits & vegetables
 - orchards
 - tomatoes & tobacco
 - green houses
 - turf
 - AgroWorld/McGill trials

Proven BioFlavv™ Bio-Stimulant Crop Benefits

Fruit

- Quality & yield
- Ripening, firmness, taste
- Nutrient & minerals
- Improved yield due to reduced stress.

Seed/Seedlings

- Germination.
- Early start, success rate

Roots & Nutrient Absorption

- Root Exudates.
- Rhizosphere activity (longer term
- root and soil effects)
- Adapt in soil with toxic metals

Soybeans Corn Wheat

Chili Tomatoes Zucchini

Grapes

Turf

Plant

- Photosynthesis turgor.
- Nutrient retrieval during senescence.
- Helps other agrochemicals into plant.
- Resistance to fungal decay.
- Biotic & abiotic stress reduction

Flowers

- More flowering, increased flower numbers.
- Attracts pollinators.

Soil

- Bio-mass, development, Soil quality
- Less compaction of soil.
- Increased free living organisms, soil quality

Source: AgroWorld Trials and Growers Results

Fruits UNIQUE: helps all other nutrients, minerals, fungicides applied from the farmers tank into into the plant more effectively

AgroWorld Experiences on Crops

Fruit & Vegetables
Tomatoes
Strawberries,
Blueberries
Peppers,
Watermelons,
Pumpkins,
Spinach,
Cucumbers,
Onions
Olives
Celery
Potatoes
Lettuce
Zucchini
Radishes
Raspberries
Cabbage
Potatoes
Carrots

Asian vegetables

Field Crops

Soy beans
Wheat
Corn
Hay
Cotton (Au)
Alfalfa
Barley
Sorghum

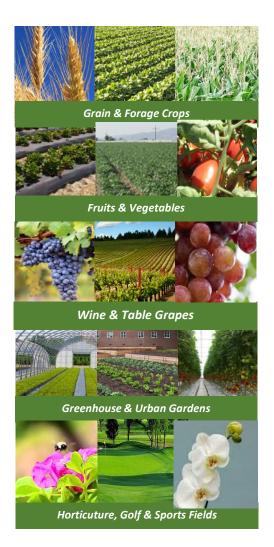
Nurseries/ Greenhouses

Honeysuckle
Evergreens
Azaleas
Mums
Lawn grass
Greenhouses
Consumer
Tomatoes
Cannabis
Cucumbers
Strawberries

Grapes

Wine Grapes Table Grapes

Fruit & Nut Trees

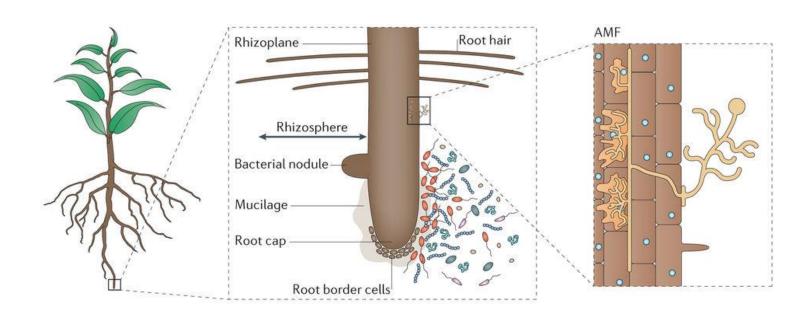

Almonds & macadamia
Apples
Pears
Peaches
Plums
Cherries

GRASSES

Sugar cane Grasses

Other

Tea Trees Cannabis Coniferous


Results/Experiences/Regular Customers on these Crops

Plant Signaling

How Does it Work?

Plant Roots surrounded by billions of bacteria "talking" to the plant, each other, & other microorganisms in the soil for **CROP SURVIVAL**: Reduce stresses and improve plant and food health

Nature Reviews | Microbiology

Signaling Technology: AgroWorld & McGill "Center of expertise in Plant Signaling Technology"

Our AgroWorld Solutions BioSignall™, BioTotall™ BioFlavv™ & BioFlavv FSC™

Based on Signaling Research with McGill Agriculture center of Excellence

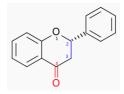
BioSignall™

Naturally occurring beneficial microbes (cell free).

BioTotall™

Plant Metabolites & microbes (cell free)

BioFlavv[™] Plant extract flavonoids


Benefits:

- Reduces climate change impact
- Boost immune system
- Improving crop yield & soil quality
- Uptake of nutrients and minerals,
- Reducing biotic and abiotic stresses
- Totally natural (organic)
- Reduced input cost
- Reduced growers mental stress

NOTE: Previous generation, McGill biostimulant research outcomes have produced products successfully applied on 250 million acres and another valued at \$100M+

BioFlavv™ Flavonoids (Basics)

INTRODUCTION TO FLAVONOIDS

- Plant secondary metabolites, discovered in early 1930s
- Every University with an "Ag" college studies Bio-Flavonoids so powerful
- Flavonoids are phytonutrients that fall into the chemical category of polyphenols
- 6,000 unique flavonoids have been identified. The largest and best studied are:
- Flavonoid family: Quercetins, anthocyanins, Resveratrol, tannins are flavonoids (wine and table grapes), flavanols, flavones, flavonones
- Flavonoids are polyphenolic compounds that are ubiquitous in nature and are categorized, according to chemical structure, into flavanols, flavones, flavanones, isoflavones, catechins, anthocyanidins and chalcones.

FUNCTION OF FLAVONOIDS

- Protect plants from different biotic and abiotic stresses (climate change weather) and
- Act as unique UV-filter, function as signal molecules, allelopathic compounds, phytoalexins, detoxifying agents, antimicrobial defensive compounds. Flavonoids have roles against frost hardiness, drought resistance and may play a functional role in plant heat acclimation and freezing tolerance.

7

MDPI Flavonoids

Review

Flavonoids in Agriculture: Chemistry and Roles in, Biotic and Abiotic Stress Responses, and **Microbial Associations** Lead Professor at McGill

Ateeq Shah and Donald L. Smith

Department of Plant Science, Macdonald Campus, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; Ateeq.Shah@mail.mcgill.ca

* Correspondence: donald.smith@mcgill.ca

Received: 26 June 2020; Accepted: 11 August 2020; Published: 17 August 2020

Abstract: The current world of climate change, global warming and a constantly changing environment have made life very stressful for living entities, which has driven the evolution of biochemical processes to cope with stressed environmental and ecological conditions. As climate change conditions continue to develop, we anticipate more frequent occurrences of abiotic stresses

R&D Flavonoids McGill Research

- Technologies on 250 million acres
- Focus sustainability of the planet food supply
- Reduction in extreme weather stresses Tech Papers available

apiotic stress; symbiosis; signaling; rhizobium; AMF;

..., , aneropathy

McGill Farm

Dr Smith, Selva, Congo Project Mgr.

Corn, wheat, soybeans Canola, L93, tomatoes

8

Example of: What do flavonoids do?

Consistent Ripening

UV & Heat Stress Protection

Wine Grapes & Vineyards

Canopy Health

Untreated

With BioFlavv

Soil Biology

Natural Biostimulant Innovations

BioFlavv™ Effects on Roots & Soil

What does BioFlavv do? Roots & Soil

- BioFlavv helps the plant to produce its own range of secondary metabolites (flavonoids).
- BioFlavv activates the "Calcone synthase" —which is called backbone of flavonoid production
- Creates:
- Increased photosynthesis
- Increased root exudates
- Healthier and more efficient root systems
- Activates the natural defense mechanisms
- Balance the plants hormone levels
- Improves soil biology

Untreated

Treated w/ BioFlavv

Effects of BioFlavy on Soil

Soil Biology Test

The control has most of the bacterial and fungal populations in a dormant form which is not providing nutrients to the vines. The soil impact in the control was harder than in the trial activity resulting in a bett sample after 2 years.

The flavonoid product BioFlavv has encouraged microbial er structure in the trial sample.

Control

SOIL BIOLOGY TEST:

"The fungal component is very good in this sample. When comparing the control and trial it is apparent that the total pools have been activated by the product.

Although the soil moistures between the trial and control are not statistically different, there is a visual difference in the texture - the trial is much less compacted into clumps than is the control soil which is rock hard. The increased activity of both bacteria and fungi in the active pool will be providing glues that are reconstructing the soil in the trial block "

Trial

Application - Roots & Soil

Benefits of seed treatment on Soybeans (below comments refer to above image):

- Flavonoids play a crucial role during nodulation after the rhizobia have entered the roots.
- The two roles for flavonoids are to inhibit auxin transport at the site of rhizobial infection -
 - (a) To induce rhizobial Nod signal biosynthesis
 - (b) Flavonoid-depleted roots have significantly reduced nodulation.
- Flavonoid-depleted roots of soybean are also deficient in both auxin transport inhibition and nodulation.
- Nodulation in isoflavone-deficient soybean roots can be restored by using C4L.
- May increase yields from 10% up to 30% as the soil will be balanced with beneficial microbes.

Untreated

Treated BioFlavy

Natural Biostimulant Innovations

BioFlavv™ *Effects on* Field, Forage & Grain Crops

PHOTO #1: Hail Storm Results July 2020 US Midwest (Actual Photo of the affected farm)

AgroWorld's BioFlavv™ hail storm relief "and"......

- Yield & protein increase
- Other inputs nutrients and minerals get into the plant more effectively
- Plant health
- Good nutrients help with organic pests
- Germination
- Soil health

BioFlavv™ on Corn Summer 2020 USA

PHOTO#2: Two Applications of BioFlavv™ and the crop returned to full healthy growth (actual photo of the crop)

Full Crop Recovery From Hail Due to BioFlavv

BioFlavv™ on Corn

Actual Photos NY

Strong & Healthy
Stalk & Brace Roots

2 cobs per stock

Stalk health -right into soil

Challenged Corn Crop in Early Season:

- Natural minerals, fertilizer & BioFlavv™ applied
- Note the root health, two cobs/stock
- Absence of disease pressure & senescence at the base

"Healthiest corn crop in this field – ever"

Trials of Foliar BioSignall™ on Corn/Maize

(metric units) Ecuador, S.A,

Parameter	Avg. Cob Length cm	Avg. Cob Diameter cm	Avg, # Kernels /Cob	Weight	
Control	15.89	5.30	464.70	226.61	367.15
BioSignall	18.66	6.22	485.75	269.19	418.90
RESULT	17.4%	17.3%	5%	18.9%	14%

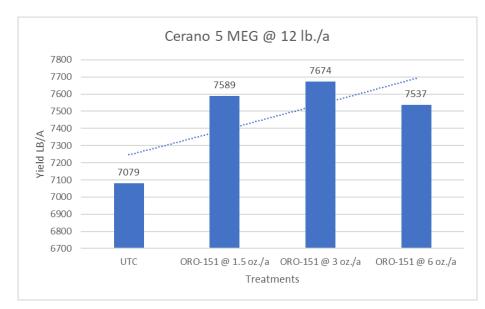
TABLE #1: Average over 60 blocks x 3 applications x 3 different dosages. (60 cc/300 m²)

BioFlavv on Paddy Rice USA

AgroWorld BioFlavv™ as a tank-mix partner with post emergent herbicides on Rice.

Problem:

Rice becomes bleached and stunted when certain essential post emergent herbicides are used in a crop production program. The objective for this study was to see if we could use BioFlavv™ as a "safener" when used as a tank-mix partner with post emergent herbicides on paddy rice.



BioFlavv™ Treatment on Paddy Rice California

Rice was sprayed with the post emergent herbicide Cerano 5 MEG @ 12 lb./a BioFlavv was added as a tank mix partner at 1.5, 3 and 6 fluid ounces per acre respectively

Treatment name	Yield LB/	Treatment cost \$	duce value acre	diffe	Value erence vs	ROI	
UTC	7079		\$ l,447.30				
BioFlavv @ 1.5 fl. oz/a	7589	\$ 1.99	\$ 1,553.90	\$	106.60	\$ 102.61	\$ 25.72
BioFlavv @ 3 fl. oz/a	7674	\$ '.98	\$ 1,570.30	\$	123.00	\$ 115.02	\$ 14.41
BioFlavv @ 6 fl. oz/a	7537	\$.5.97	\$ 1,541.60	\$	94.30	\$ 78.33	\$ 1.90

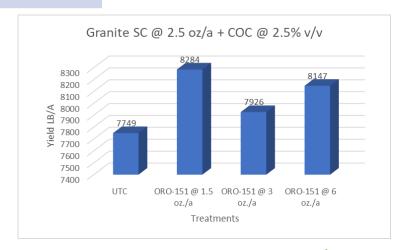
Commercial rice price @ \$410/mt BioFlavv price calculated @ \$90 / liter or \$33.81 / fl. oz...

A **paddy field** is a flooded <u>parcel</u> of <u>arable land</u> used for growing semiaquatic crops, most notably rice and taro. Source: https://en.wikipedia.org/wiki/Paddy_field

BioFlavv™ Treatment on Paddy Rice California

Rice was sprayed with the post emergent herbicide
Granite SC @ 2.5 oz../a + COC @ 2.5% v/v
BioFlavv was added as a tank mix partner at 1.5 , 3 and 6 fluid ounces per acre respectively

Treatment Name	Yield Lb/acre	Treatment Cost	Produce Value/Acre	\$ Value Difference	ROI	ROI Difference
итс	7749		\$1,586			
BioFlavv @ 1.5 fl. ounces/acre	8284	US\$3.99	US\$1,697	US\$110	US\$106	US\$26
BioFlavv @ 3.0 fl. ounces/acre	7926	US\$7.98	US\$1,623	USD\$36	US\$29	US\$3
BioFlavv @ 6 fl. Gl. ounces/acre	8147	US\$15.97	US\$1,668	US\$82	US\$66	US\$4

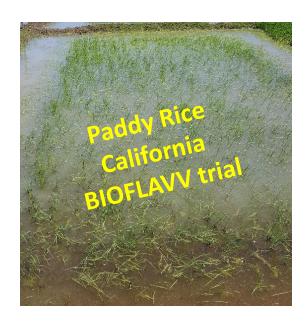


Oryza sativa, commonly known as Asian rice

Commercial Rice Price # US\$410/mt

BioFlavv price calculated at US\$90/liter or \$33.81/ounce

Improved Plant Health & Reducing Herbicide Stress


BioFlavv™ Treatment on Paddy Rice California

Improve plant health while mitigating clomazone injury

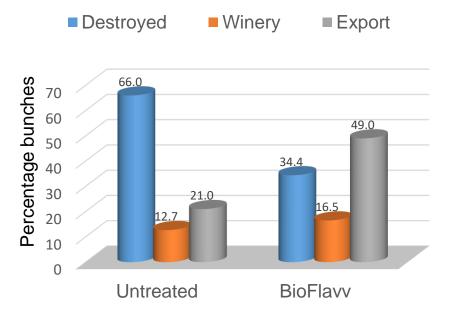
Replication I

Control (clomazone alone)

12 fl. oz rate + clomazone

Natural Biostimulant Innovations

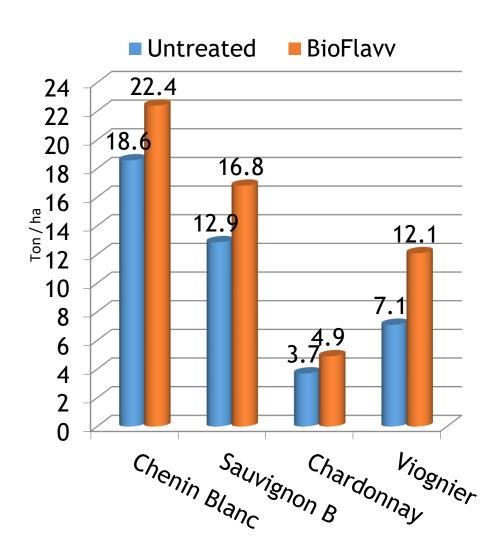
BioFlavv™ Effects on Wine & Table Grapes

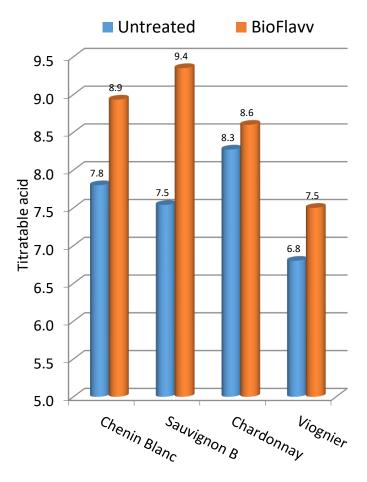

California Table Grapes

BioFlavv on heat stress:

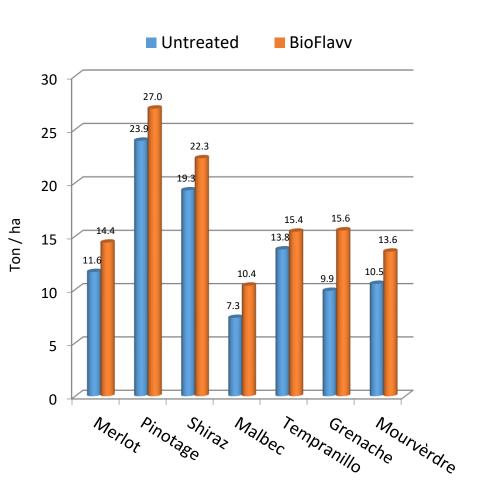
(Redglobe, Nuli Secundes, De Doorns, 2012)

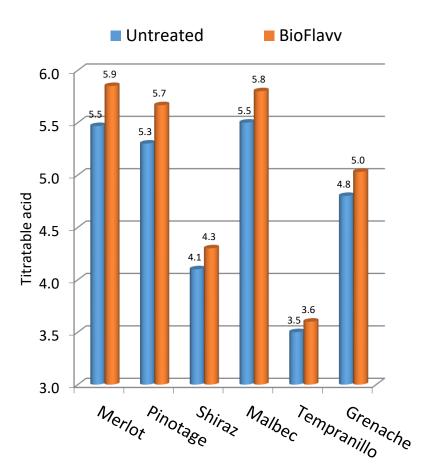
BioFlavv spray programme:

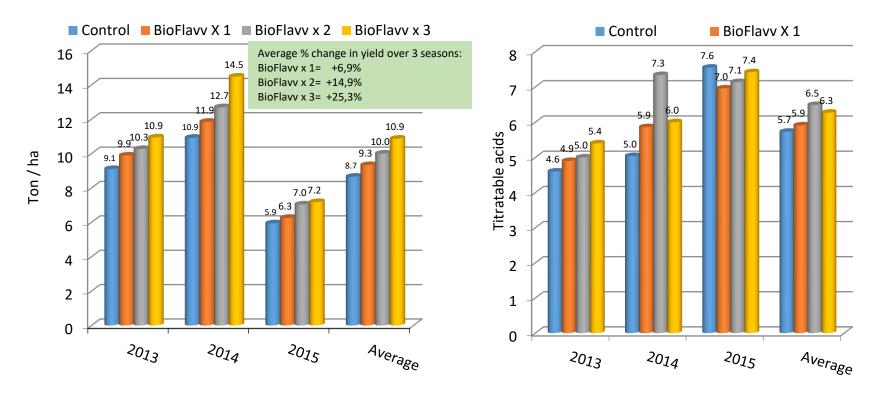

11-Oct-12 15-30 shoot length 400ml/ha 14-Nov-12 Flowering to Cap fall 500ml/ha 04-Dec-12 Pea to small marble 500ml/ha



BioFlavv


Untreated


BioFlavv on yield & titratable acidity for various white grape cultivars

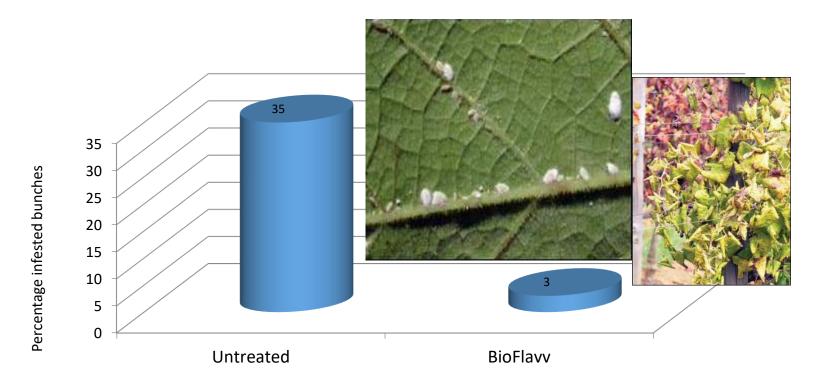


BioFlavv on Yield & Titratable acidity for various red grape cultivars

Effect of BioFlavv applications over 3 seasons on yield and percentage tartaric acid. Cabernet sauvignon (J. Basson, Malmesbury)

BioFlavv X 1 @ Pre Flower(mid October) (300 ml / ha) BioFlavv 2 @ Cap fall/set (mid November) (300ml / ha) BioFlavv x 3 @ Pea sized berries (mid December) (400ml / ha)

BioFlavv on Erinose mite infestations on new growth at harvest Chenin Blanc: Slanghoek



Peet Smith, Rawsonville

Groot Constantia: Merlot Percentage bunches infested with mealy bug at harvest

Observations: 35-50 % less loose berries in the container after assessments BioFlavv less snout beetle damage on berry stems

Cabernet Sauvignon - Malmesbury

Intreated
inirealen

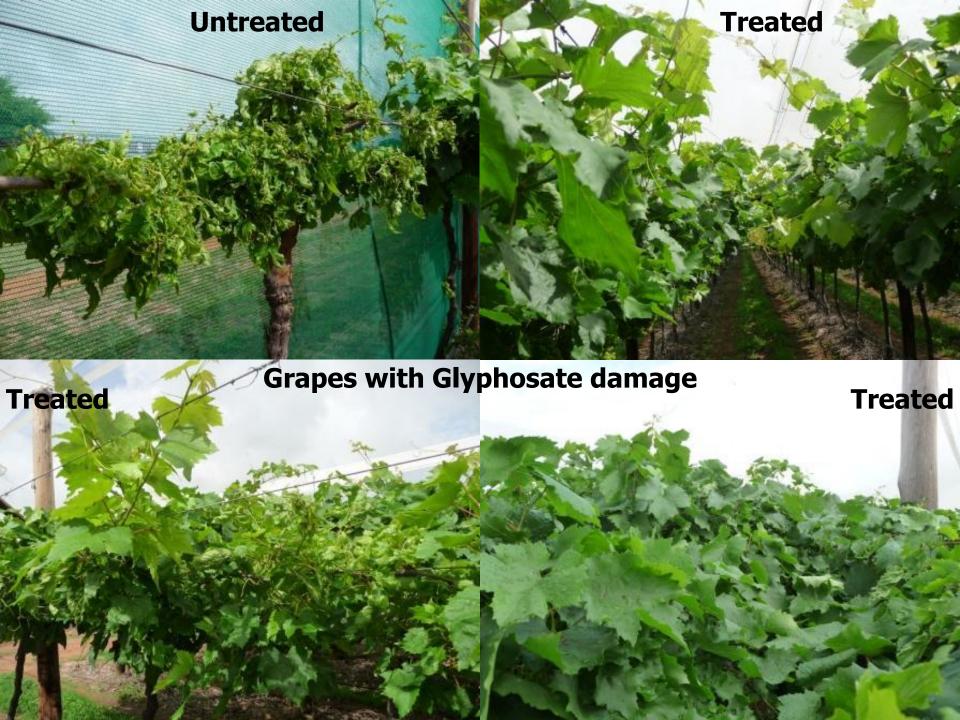
- 1. BioFlavv X 1 @ Beginning flowering (begin November 12)
- 2. BioFlavv X 2 @ 1 plus a month later (beginning December 12)
- 3. BioFlavv X 3 @ 1 + 2 + a month later (beginning of January 13)

Percentage Powdery M infected bunches

reiteillage rowdery willietted builties	
78.0	
45.2	
4.8	
0.8	

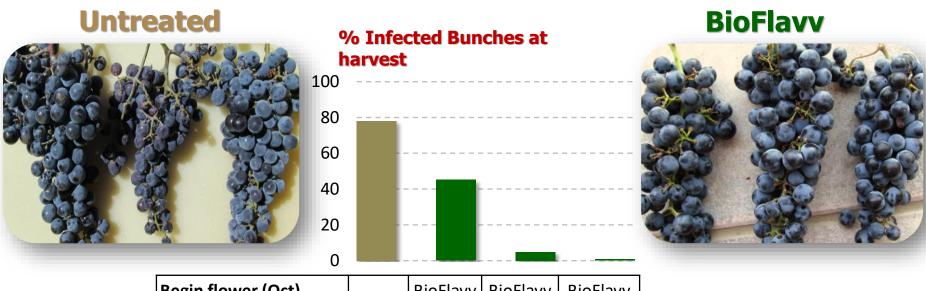
Shiraz-Boschendal

BioFlavv: 11%

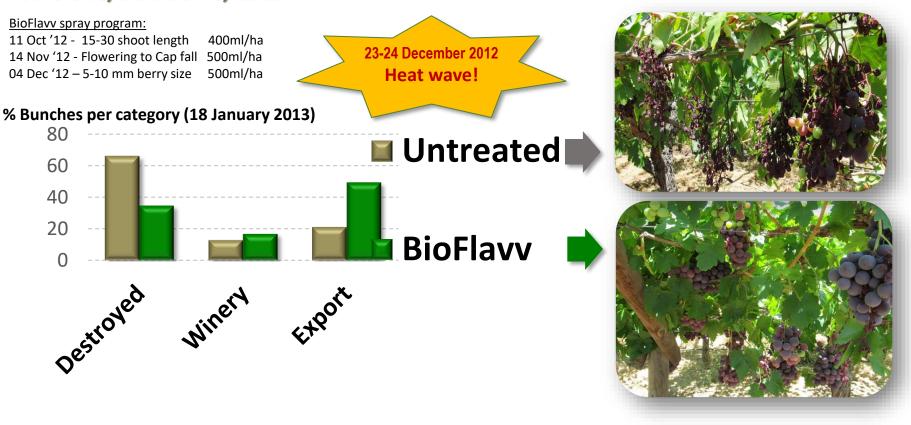

bunches

Snout beetle damage

Untreated: 51%



Powdery mildew infection and bunch quality


Cabernet Sauvignon, Malmesbury

Begin flower (Oct)	 BioFlavv	BioFlavv	BioFlavv	
One month later (Nov)	 	BioFlavv	BioFlavv	
One month later (Dec)	 		BioFlavv	

Effect on Heat stress and bunch quality

Red Globe, De Doorns, 2012

BioFlavv over 2 seasons

Soil Analyses - block 1A, Plasir De Merle

Sheila Storey M Sc (Agric) Pr Sci Nat

www.nemlab.co.za

6-year old Cabernet Sauvignon on Richter 99

nail / Epos: sheila@nemlab.co.za						
7	Untrea	ted	BioFlavv (2 year program)			
Index	Value Comment		Value	Comment		
Structure (SI) Struktuurindeks	19.14	Few trophic compounds (0% = none)	36,89	Structure improved		
Enrichment index (EI) Verrykingsindeks	87,85	Highly N-rich, but not broken down	46,73	Sufficiently enriched		
Channel index (CI) Kanaalindeks	4,27	Breakdown is bacterial	20,00	Breakdown is bacterial		
Basal index (BI) Basaalindeks	11,81	Bacterial with enough resources and fast nutrient turnover	40,62	Many opportunists adapted to stress conditions		
Fungal: Bacterial index (FBI) Swam: bakterie indeks	0,13	Fast decomposition and nutrient turnover	0,19	Fast decomposition and nutrient turnover		

BioFlavv on Wine Grapes

Fermentation study

Chenin Blanc. Harvest Jan 2013 @ sugar content 25°B

Screeners Development CC. 2000/004049/23

T. L. Klerck - Independent Contractor

PO Box 1102 Wellington, 7654, RSA + 27 82 7734704

E-mail: screeners@worldonline.co.za

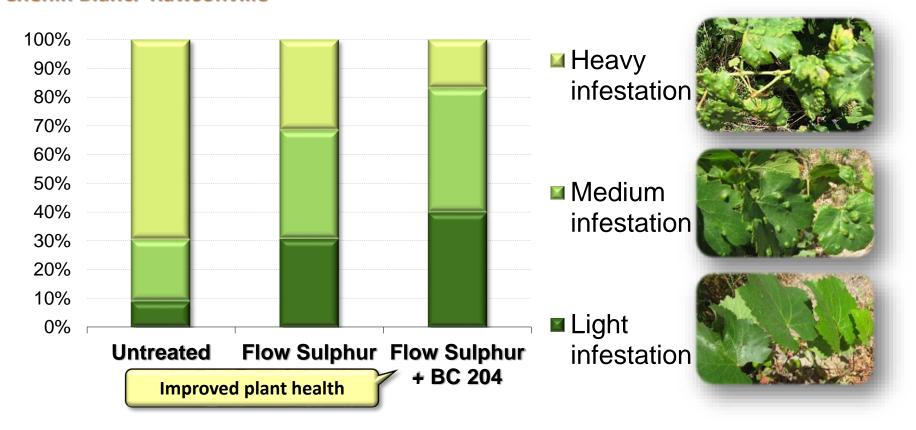
VAT. Reg. Nr. 4700195805

Both Juice and wine acidity "noticeably higher" than untreated

- pH similar to untreated
- Fermentation was not affected

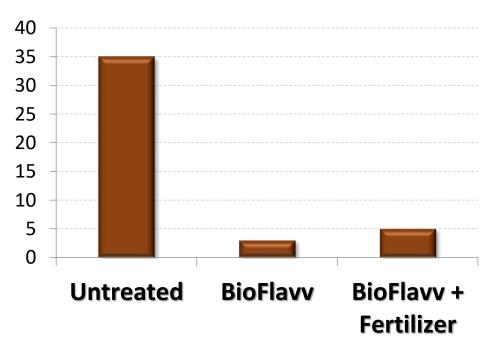
Natural Biostimulant Innovations

BioFlavv™ Effects on Wine & Table Grapes & Insect & disease suppression



Erinose mite infestations at harvest

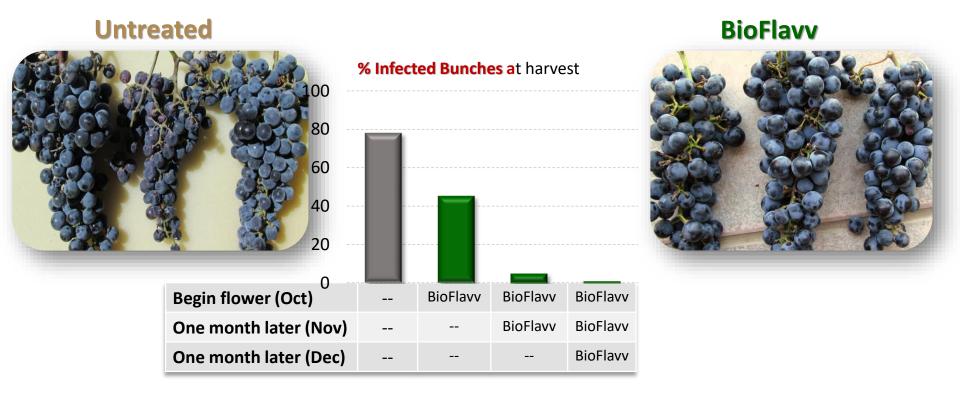
Chenin Blanc. Rawsonville


Erinose mite infestations and bunch quality at harvest

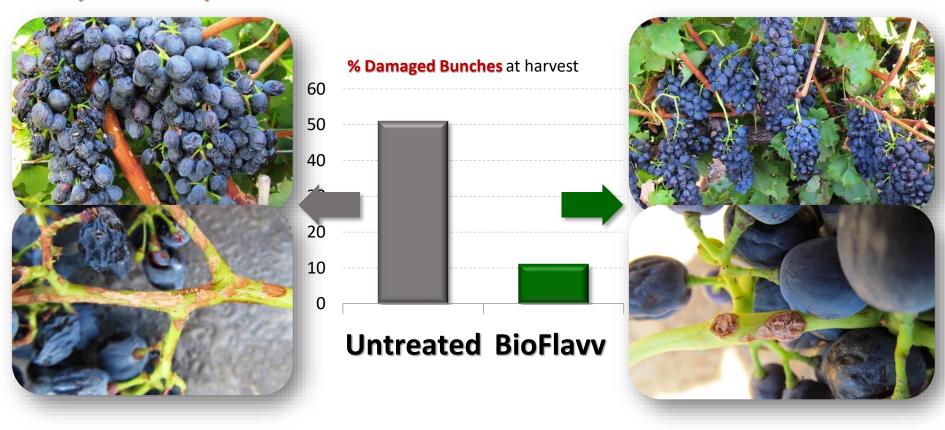
Peet Smith, Rawsonville

Mealybug infestation at harvest

Percentage infested bunches, Merlot, Groot Constantia


Observations:

- 35-50 % less loose berries during assessments
- Less snout beetle damage on berry stems


Powdery mildew infection and bunch quality

Cabernet Sauvignon, Malmesbury

Snout beetle damage on bunch stems

Shiraz, Boschendal, Paarl

Esca

Esca, a wood disease affecting grapes all over the world, is one of the biggest modern threats to grape production. Esca is a complex disease involving several different fungi. It attacks the main vine of the plant and can destroy it within a few days; there is no questioning the unstoppable pace at which this disease progresses.

Esca is one of the oldest-known diseases to afflict grape vines, having been noted by the Greeks and Romans and damaging vineyards quite heavily in the early 1900s. In twentieth-century France, more than 5% of vines were killed by esca each year. Because the disease grows at a slow but progressive pace, even the larger, well-established vineyards could be totally destroyed by esca in 15 to 20 years.

Esca Results & Discussion

In table 1 are presented the results after two seasons applications. As shown, even from the first year of application there was an important decrease of esca incidence while there was a significant decrease of sudden death of plants. The year before application of BioFlavv the situation was dramatic and the farmer wanted to replace the vineyard.

Table 1. Effect of BioFlavv on Esca in Agiorgitiko Vineyards

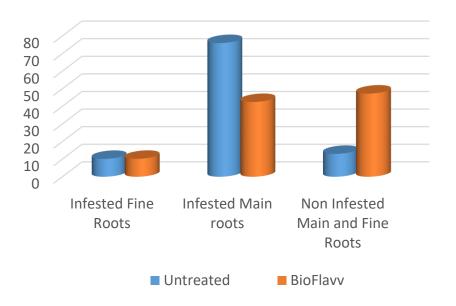
Season	Chronic Symptoms	Acute Symptoms (apoplexy)
2005 (Before BioFlavv)	≈ 50	10
2006	≈ 20	1
2007	≈ 10	0

Figure 1. Vineyard in 2006

Figure 2. Vineyard in 2007

Figure 3. Vineyard in 2008

Natural Biostimulant Innovations



BioFlavv™ Effects on Fruits & Vegetables

Results on Tomatoes

Percentage Roots per mass infested with root knot nematodes

Untreated

BioFlavv treated

Infested fine roots

Infested Main roots

Non-Infested Main + Fine roots

General plant benefits

- Enhanced Photosynthesis and increased secondary metabolite levels enable the plant to improve production of carbohydrates.
- Increased root exudates, stimulate activity of beneficial rhizosphere organisms and improves colonization of soil fungi on roots, while suppressing harmful organisms.
- Healthier rhizophere ensures more effective uptake of nutrients and water.
- Treated plants are healthier, more resistant to pest and disease attacks and able to perform better under sub-optimal conditions.
- 15-20% more plants per acre with more uniform bulb size (up to 75% medium)
- Improves uptake of nutrients.
- Well suited to integrate with biological soil inoculates.
- Suitable for use in organic production.
- Increased profitability.
- Improved quality less fussarium, etc.
- Defends: Inhibit phytopathogenic attacks such as fussarium, phytophtora verticillium and induce plant-defense mechanism against potential pathogenic attacks.
- May increase yield 10-30%.

Untreated

Untreated

Application - Onions

Treated BioFlavy

Application - Leafy Greens

Benefits on Leafy Greens / Spinach:

- Enhanced Photosynthesis and increased secondary metabolite levels enable the plant to improve production of carbohudrates.
- Increased Biomass and chlorophyll up to 50%
- Increased root exudates, stimulate activity of beneficial rhizosphere organisms and improves colonization of soil fungi on roots, while suppressing harmful organisms. Induce-plant defense mechanism against potential pathogenic attacks.
- Healthier rhizosphere ensures more effective uptake of nutrients and water.
- Treated plants are healthier, more resistant to pest and disease attacks and able to perform better under sub-optimal conditions.
- Helps restore soil biology by converting fertilizer efficiency, enhanced micronutrient uptake, increase water retention, and yielding higher crop & quality.
- May increase yields from 10% up to 30%.

Program with C4L:

Seedling trays:

Leafy Greensl 2 fl. oz. per 25 gal soil drench solution.

After Transplanting:

- 2 fl. oz. per acre
- 2-3 more applications at 4 fl. oz per acre 3 to 4 weeks apart

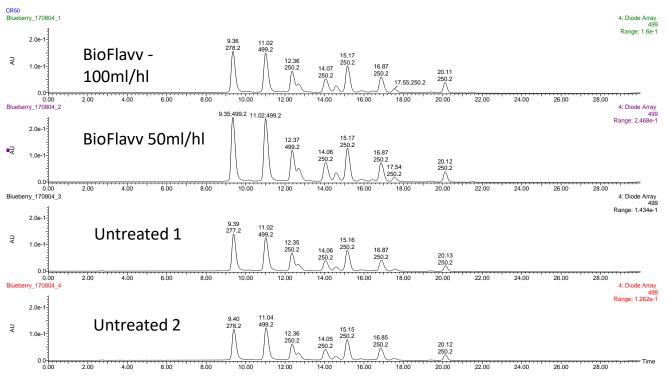
Remarks

To improve root developtment and transplanting shock: Seedling drench:

Drench seedling traus at least twice during the seedling stage of which the last one should be 14 days prior to transplanting.

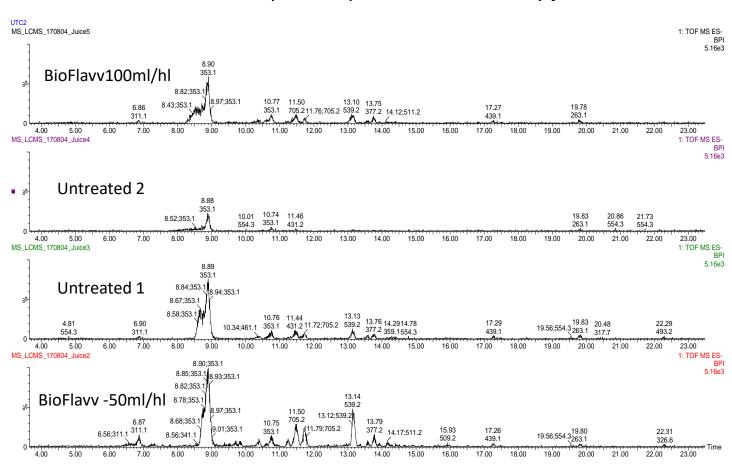
To improve head size and yield:

If seedling traus were not drenched commence sprays within one week after transplanting, but if drenched, apply 1st spray 14-21 days after transplanting. Apply 2 -3 further sprays at 21 to 28 day intervals.


Blueberries

UV chromatograms of the anthocyanidins in the blueberries at 499 nm:

465= delphinidin-3-glucoside 449=putinidin-3-arabinoside 435=delphinidin-3-arabinoside 493= malvidin-3-glucoside 479=putinidin-3-glucoside 463= malvidin-3-arabinoside


521=Petunidin 3-acetylglucoside 535=Malvidin 3-acetylglucoside

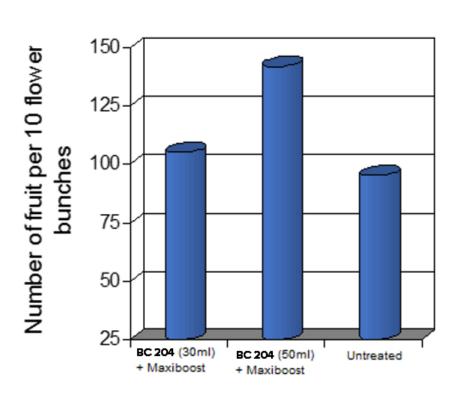
Phenolic compounds present in blueberry juice

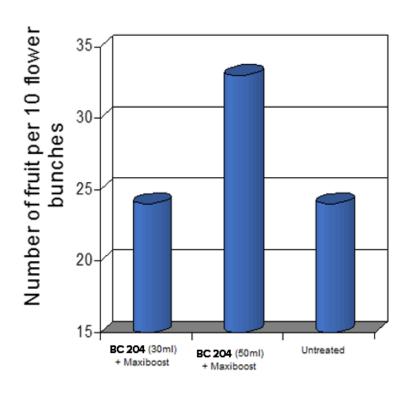
Natural Biostimulant Innovations

BioFlavv™ Effects on Fruit & Nut Orchards

52

Macadamia Nuts


Length of flowers – up to 300 ml


3 stages of flowers – 80% of trees

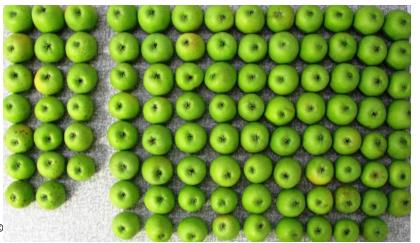
Macadamia Nuts

BC204 = BioFlavv

Assessment date: 29 November after natural fruit drop stopped

BioFlavv on the incidence of Bitter pit in Panorama Golden apples after cold storage at 4°C for 26 days.

7 times Calcium nitrate sprays


Bitter pit: 75%

Russeting: (% Class I fruit)

Stem end: 56% Retiform: 46%

7 times
Calcium nitrate
Sprays + BioFlavv@
500ml/ha

Mid October 2010
Mid November 2010
Mid December 2010

Bitter pit: 20 %

Russeting: (% Class I fruit)

Stem end: 95%

Retiform: 78%

Aging of cut Panorama Golden Delicious apples treated with BioFlavv compared to untreated fruit when kept after harvest at room temperature for 15 days

Color Charts for Russeting assessments

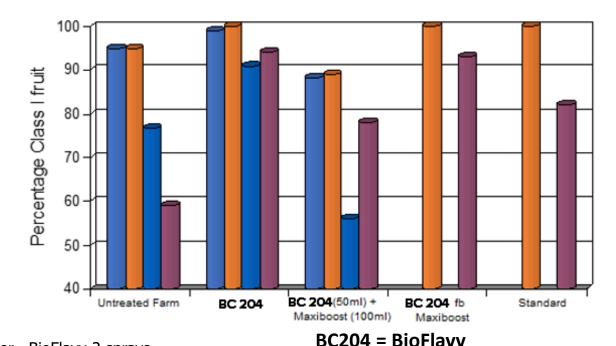
Stem end

GOLDEN DELICIOUS-APPELS/APPLES STEM END RUSSETING 1 2 3 4 8 7 6 5

Retiform

Class I

Class I


Russeting

Apples: Panorama Goldens: 2010 vs 2011

Percentage fruit in Class I (export)

■ SE 2010 ■ SE 2011 ■ RF 2010 ■ RF 2011

SE = Stem End RF = Retiform

2010: BioFlavv 4 sprays 2011: BioFlavv 3 sprays

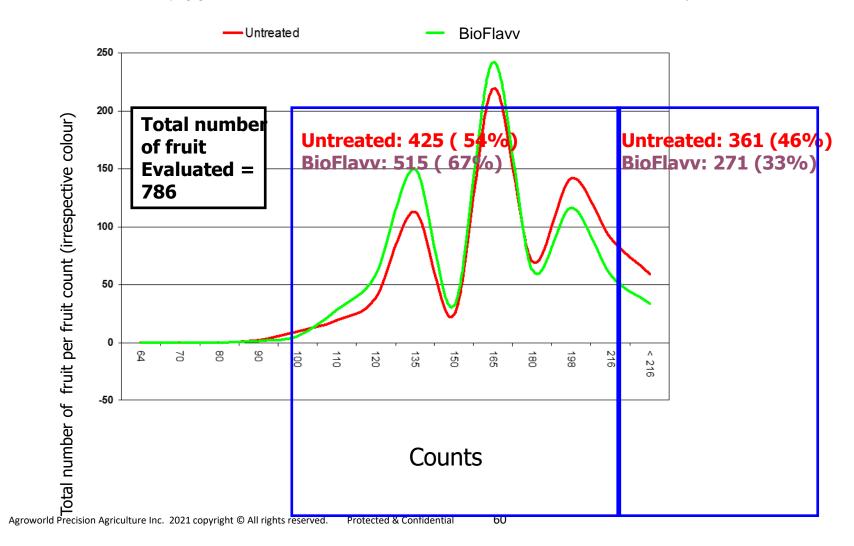
2011: BioFlavv fb fertilizer . BioFlavv 2 sprays

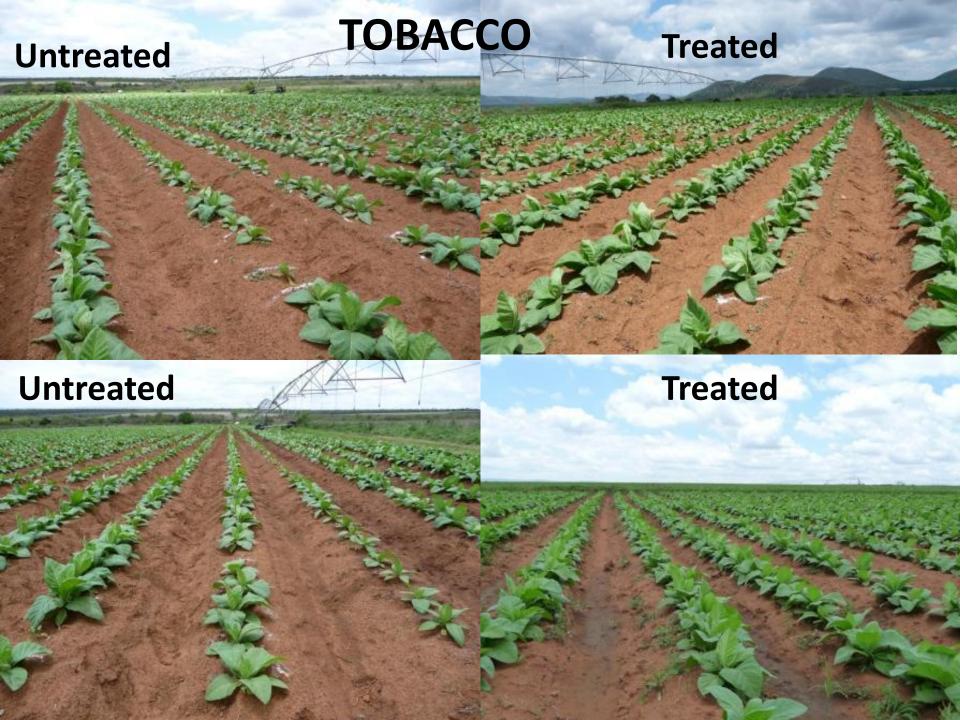
Timing: Started at 90 % petal drop fb month applications

BioFlavv concentration: 50ml / hl

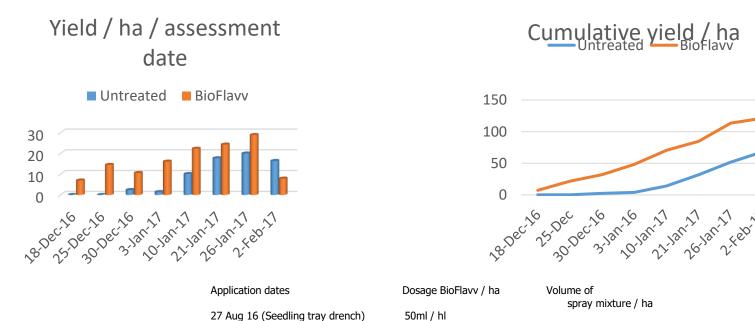
ntration: 50ml / hl

Pink Lady Fruit Finish at harvest (Culled fruit)


4 x Monthly applications



BioFlavv (16%)


BioFlavv on number of fruit / count; Applethwait, Elgin, 2011 (Applications: 2X BioFlavv @ 500ml / ha 10 and 5 days before harvest)

Tomatoes

Effect of BioFlavv on tomato(Oxheart) yield and cumulative yield / ha over time (2017)

63,4ml

166ml

225ml

285ml

126L

333L

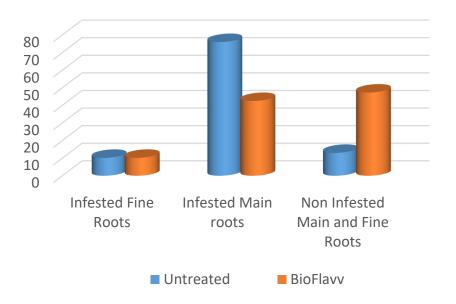
443L

570L

29 August 16: Planting date:

29 Sep 16

02 Nov 16


02 Dec 16

30 Dec 16

Tomatoes

Effect of BioFlavv on the incidence of root knot nematode infestation of Oxheart tomatoes

Percentage Roots per mass infested with root knot nematodes

Untreated

BioFlavv treated

Infested fine roots

Infested Main roots

Non-Infested Main + Fine roots

Natural Biostimulant Innovations

BioFlavv™ Effects on Greenhouse Fruits & Vegetables

Production Greenhouses

Baby Spinach

Without BioFlavv

With BioFlavv

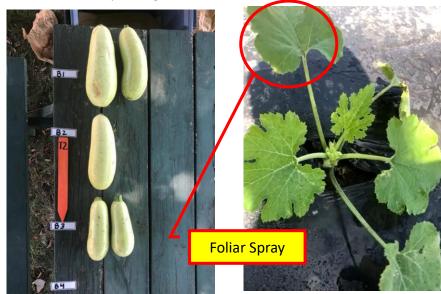
Natural Biostimulant Innovations

McGill University Field Trials 2021,22 Flavonoids (BioFlavv), CFS (BioSignall) & BioTotall (Combined) Yield, quality & stress trials

McGill Salt Stressed
Soybean Trials w/BioFlavv

McGill University Project BioSignall, BioFlavv, BioTotall on Vegetables Summer 2020

Greenhouse Zucchini



Foliar Spraying Backpack

Zucchini 27 July 2020 Canada

Zucchini Transplanting

Quality & Yield Measuring

Zucchini Foliar Spray

Zucchini Flowering

Zucchini Flowering Trial Blocks Marked

Zucchini 27 July

Natural Biostimulant Innovations

BioFlavv: Versus the flavonoid competition

Effect of different concentrations of the NF and one concentration with OF on fruit mass (g), number of fruit / ha and yield in ton / ha CONFIDENTIAL

NF: New formulation OF: Old formulation

Direct Competition Flavonoids

Benefits of Significantly Higher levels of Crop Nutrients with BioFlavy Product compared to competition:

- Increased yield
- Stress resilience, yield, crop quality,
- Nutrient increase in food crops
- Plant & soil health improvements
- Organic (conventional and organic crops)
- Reduced macro/micro nutrient replacement in next year

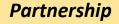
Grain, fruits, wine grapes, vegetables crops

Measurement Parameter 2021 Field Trials	AgroWorld BioFlavv™ Increased Nutrients following an application of BioFlavv compared to the competitive flavonoid product	
Nitrogen	+23%	
Phosphorus	+65%	
Potassium	+16%	
Calcium	+26%	
Magnesium	+12%	
Sulphur	+13%	
Zinc	+12%	
Boron	+22%	
Data obtained from independent field trials 2021		

Thank You/ Merci/謝謝/Gracias

Help the plant to help itself

Robert F. Lee, <u>robert@agroworld.farm</u> +1-514-691-8732


Disclaimer

UNDER NO CIRCUMSTANCES SHALL AGROWORLD NATURAL PRODUCTS OR AFFILIATES BE LIABLE TO ANY OTHER PARTY FOR ANY DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, PUNITIVE, OR SPECIAL DAMAGES ARISING OUT OF OR IN ANY WAY CONNECTED WITH THE USE OF OR INABILITY TO USE OUR PRODUCTS, PROTOCOLS, APPLICATION INFORMATION, WEBSITE, SOFTWARE, WRITTEN DOCUMENTATION, OR SERVICES OBTAINED THROUGH OR IN CONNECTION WITH OUR WEBSITE, REGARDLESS OF WHETHER SUCH DAMAGES ARE BASED ON CONTRACT, TORT, STRICT LIABILITY OR OTHER THEORIES OF LIABILITY, AND EVEN IF AGROWORLD NATURAL PRODUCTS. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BEFORE USING OUR PRODUCTS, THE USER SHOULD DETERMINE THE SUITABILITY OF EACH PRODUCT FOR THE INTENDED USE, THE USER THEN ASSUMES THE RISK AND LIABILITY IN CONNECTION THEREWITH. NOTHING CONTAINED HEREIN IS INTENDED TO SUGGEST VIOLATION OF ANY EXISTING PATENTS OR GIVE PERMISSION TO PRACTICE ANY PATENTED INVENTION WITHOUT A LICENSE. THE LAWS OF CERTAIN JURISDICTIONS DO NOT ALLOW LIMITATIONS ON IMPLIED WARRANTIES OR THE EXCLUSION OR LIMITATION OF CERTAIN DAMAGES SO THESE LIMITATIONS APPLY TO EACH PARTY TO THE EXTENT PERMITTED BY PPLICABLE LAW.

February 13, 2019

AgroWorld identified as the commercialization partner for the AAFC grant

AgroWorld reprsentatives (image on left) were present at the AAFC grant announcement MacDonald Campus of McGill University on Monday and introduced as the commercialization partner for this important Government Of Canada initiative. The role of Agroworld will be to market cutting edge signalling and plant extract agricultural products to our extensive distribution network in the USA and Canada. External media links:

Federal Government Invests In Bioeconomy

<u>The Government of Canada invests in innovation to help grow Canada's bioeconomy</u>. Canada invests in biomass research cluster to grow bioeconomy.

